Answer:
1820 ways
Explanation:
Use combination method. where order does not matter.
[tex]\sf _n C_r=\dfrac{n !}{r ! (n-r) !}[/tex] : combination formula
Solve:
[tex]\sf \bold{\cdot}} \ _{16} C_4[/tex]
[tex]\sf \bold{ \cdot} \ \dfrac{16!}{4!(16-4)!}[/tex]
[tex]\sf \bold{ \cdot} \ \dfrac{16!}{4! \ x \ 12!}[/tex]
[tex]\sf \bold{ \cdot} \ 1820[/tex]
Answer:
1820 ways
Step-by-step explanation:
Formula of a combination
Here, n = 16 and r = 4.
Solving